30 September 2008

Mr. John Peard Hawaii DDepartment of Health Hazard Evaluation and Emergency Response Office 46 Keawe Street Hilo, HI 96720

Subject: Sampling and Analysis Plan Amendment

Former Pepeekeo Sugar Company Property

Hakalau, Hawaii

Dear John:

On behalf of Aloha Green, ERM hereby submits for your review and approval an amendment to the Sampling and Analysis Plan (SAP) for the former Pepeekeo Sugar Company property in Hakalau, Hawaii (TMKs: 3-2-9-02:79 & 81). An initial SAP for the project, dated 8 July 2008, was submitted for your prior review and approval. The SAP called for an "Amendment" following the XRF Field Screening study for lead and arsenic, in order to finalize Decision Units for multi-increment soil sampling and laboratory analysis. In this SAP Amendment, we will summarize the findings of the Phase 1 XRF Field Screening and propose the scope of Phase 2 Decision Unit sampling and analysis.

PHASE 1 XRF SCREENING FOR ARSENIC, LEAD AND MERCURY

ERM performed comprehensive X-Ray Fluorescence (XRF) soil screening of soils across the 8.7 acre property on 22-24 July 2008, with infill sampling and analysis on 27-28 August 2008. An initial grid with 50-foot spacing was laid out by measuring tape and pin flags, and surface soils from 0 to 6 inches depth were collected at each sample location in zip-top plastic bags. Samples were analyzed using an Innov-X field portable XRF instrument for arsenic, lead and mercury. Arsenic was the principal target of the investigation, with lead being a secondary concern due to the fact that other sugar facilities have shown lead in soils around older buildings (apparently from lead paint spalling and incorporation into soils). Mercury was added to the target metal list for XRF screening to help resolve the issue of potential release from an on-site seed dipping facility (although use of mercury in this process is not known to have occurred).

Environmental Resources Management

733 Bishop Street Suite 1872 Honolulu, HI 96813 (808) 521-4404 tel (808) 521-4408 fax

Mr. John Peard Hawaii Department of Health 30 September 2008 Page 2

Standard reference materials (SRMs) for arsenic were created using native soil from the Island of Hawaii that was known to contain less than 10 mg/kg (parts-per-million or ppm) arsenic. Site-specific SRMs at a range of arsenic concentrations were prepared by spiking these reference soils with known quantities of arsenic. SRMs at 50ppm, 200ppm, 800ppm, 3000ppm and 10,000ppm were prepared. SRMs were analyzed by XRF before, during and after analysis of field samples, and arsenic reported arsenic concentrations are corrected based on SRM calibration curves. For lead and mercury, commercial SRMs from the National Institute for Standards and Technology (NIST) were utilized, since they had certified lead and mercury content.

The initial sampling and XRF analysis of soils was performed on the 50 foot grid. Soil arsenic levels were mapped and an area of elevated soil arsenic was observed near the location of the former pesticide mixing facility. Infill sample locations at 25-foot spacing were placed across this arsenic anomaly to improve delineation of the feature. Maps showing the location of XRF soil screening sample locations and a contour map of surface soil arsenic concentrations are provided as attachments (Figures 1 and 2).

Lead and mercury were also measured using the Innov-X portable XRF. Concentrations of these two metals did not appear to be elevated above background soil levels, and were generally below the Hawaii Department of Health Environmental Action Levels (EALs) for residential exposure. Table 1 shows the concentrations of arsenic, lead and mercury in soils as determined by XRF, with samples with concentrations above EALs shaded. Figure 3 shows histograms of the soil concentrations for lead and mercury with the EALs provided for comparison purposes. Only a few samples had lead and mercury concentrations above EALs; these samples were not significantly above EALs and were not spatially clustered.

TRENCHING AND VERTICAL PROFILING OF SOIL ARSENIC

Eight trenches were excavated by Aloha Green, at locations recommended by ERM, within the arsenic soil anomaly near the northern property boundary. The locations of test trenches are shown on the attached figures. Composite soil samples were collected at 4-inch (10 centimeter) intervals from the surface to the bottom of the trenches (from 3-6 feet depth). Samples were analyzed by portable XRF as per surface

Mr. John Peard Hawaii Department of Health 30 September 2008 Page 3

soil samples. In summary, soil arsenic above 100 ppm was observed to extend to depth of 3-4 feet in the area of highest surface soil arsenic (near the former pesticide mixing area) to less than 1 foot depth at some locations downhill (east) of the pesticide mixing area.

TOTAL AND BIOACCESSIBLE ARSENIC ANALYSIS

A set of 12 soil samples are being analyzed for total and bioaccessible arsenic at the University of Colorado; results have not yet been received at the time of this letter report. Samples were selected across a range of total arsenic concentration, and from both surface soils and deeper soils collected from the trenches.

PROPOSED DECISION UNIT MULTI-INCREMENT SAMPLING

Based on findings of the XRF field screening work, and further review of Sanborn fire insurance maps that show the sugar company facilities over time, ERM proposes only one minor change from the sampling plan described in the 8 July 2008 SAP: eliminate the collection of soil samples in the vicinity of the Seed Dipping Operation for analysis of soil mercury. ERM believes the comprehensive XRF screening for mercury clearly eliminates mercury from consideration as a potential site contaminant. The XRF findings support initial HDOH sampling and analysis that found no elevated mercury in soils around the Seed Dipping Operation. In summary, the proposed Decision Units and associated analyses are:

Decision Unit Description	Analysis		
Gas and Oil Storage	TPH, PCBs		
Carpenter and Electrical Shops	TPH, PCBs		
Fertilizer and Oil Storage	Metals, TPH		

To close, I hope you find the summary of work to date and proposed additional sampling and analysis to be to your satisfaction. Please do not hesitate to contact me at (808) 521-4404 (office) or (808) 381-9121 (cell) with any questions or comments.

Mr. John Peard Hawaii Department of Health 30 September 2008 Page 4

Sincerely,

William G. Cutler, RG *Managing Director*

Will & Cuth

Triumuşing Director

Cc: Steve Shropshire Jeff Melrose

Table 1. XRF Screening Data Aloha Green Property Hakalau, Hawaii

				Arsenic 1	Lead mg/kg (ppm)	Mercury
Sample ID	X-Coord	Y-Coord	EAL ->	22	400	10
A-005	5	0		6.9	132.6	4.9
A050	50	0		9.1	279.9	4.5
A100	100	0		32.8	973.8	4.6
A150	150	0		10.3	325.4	5.0
A200	200	0		32.9	222.0	5.6
A250	250	0		3.7	120.9	4.5
A300	300	0		7.7	104.5	5.8
A350	350	0		17.7	121.3	4.3
A400	400	0		12.5	70.0	4.3
A450	450	0		32.6	163.6	4.5
A500	500	0		17.6	120.0	5.3
A550	550	0		5.9	88.0	4.6
A600	600	0		20.3	542.1	13.0
B-005	5	50		6.5	122.6	4.6
B050	50	50		10.5	374.9	5.0
B100	100	50		9.8	344.5	4.8
B150	150	50		6.2	117.5	4.7
B200	200	50		11.7	386.7	5.1
B250	250	50		14.0	435.7	6.6
B300	300	50		6.6	129.6	4.5
B350	350	50		31.7	108.7	4.5
B400	400	50		24.5	173.0	4.1
B450	450	50		7.7	213.4	4.4
B500	500	50		7.4	82.5	5.2
B550	550	50		7.4	202.3	4.0
B600	600	50		7.7	121.8	4.7
C0	0	100		5.6	97.7	3.9
C050	50	100		8.7	224.3	4.6
C100	100	100		3.4	12.4	3.9
C200	200	100		22.1	140.5	4.9
C250	250	100		15.0	398.3	6.5
C300	300	100		4.1	21.7	4.6
C350	350	100		18.9	68.6	4.3
C400	400	100		81.6	147.8	4.1
C450	450	100		26.5	123.2	4.3
C500	500	100		7.6	180.3	4.2
C550	550	100		46.2	150.5	4.1
C600	600	100		39.5		

Table 1. XRF Screening Data Aloha Green Property Hakalau, Hawaii

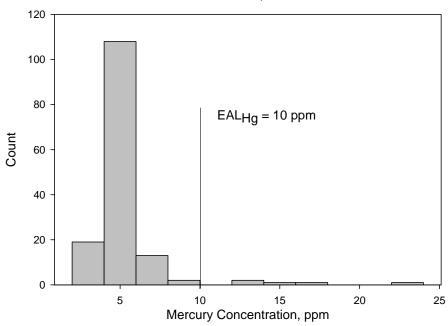
				Arsenic 1	Lead mg/kg (ppm)	Mercury
Sample ID	X-Coord	Y-Coord	EAL ->	22	400	10
D-005	5	150		6.3	175.7	3.7
D050	50	150		4.3	48.9	4.2
D100	100	150		4.7	62.6	3.9
D200	200	150		4.7	43.9	4.3
D250	250	150		3.6	22.2	4.0
D300	300	150		5.4	90.2	4.2
D360	360	150		53.0	199.3	4.6
D400	400	150		40.2	391.0	5.6
D450	450	150	_	15.9	98.8	5.9
D500	500	150		20.5	64.2	5.1
D550	550	150		21.3	158.8	4.2
D600	600	150		34.2	203.1	4.5
E-005	5	200		18.9	1339.5	5.4
E050	50	200		4.6	75.6	4.0
E100	100	200		4.2	32.1	3.9
E200	200	200		8.0	260.5	4.6
E250	250	200		10.4	54.1	4.7
E300	300	200		4.3	44.9	4.3
E400	400	200		3.6	30.7	3.9
E450	450	200		20.7	56.5	4.7
E500	500	200		10.1	32.0	8.0
E550	550	200		5.0	51.8	4.4
E600	600	200		17		
F150	150	250		5.4	73.2	5.3
F200	200	250		10.8	65.5	3.2
F250	250	250		4.3	40.9	4.1
F300	300	250		7.6	221.9	3.9
F350	350	250		18.9	84.9	5.0
F400	400	250		3.1	18.6	3.7
F450	450	250		11.9	93.6	4.5
F500	500	250		4.9	65.5	4.0
F550	550	250		4.0	18.4	4.8
F600	600	250		375.3	174.8	7.4
G0	0	300	_	3.2	13.6	3.9
G100	100	300		20.9	40.5	5.1
G150	150	300		95.9	67.4	4.2
G200	200	300		99.5	85.1	4.1
G250	250	300		4.5	58.8	4.0
G300	300	300		92.5	842.8	5.9
G350	350	300		21.7	223.8	7.9
G400	400	300		4.0	34.7	5.9
G450	450	300		3.1	11.7	8.6
G500	500	300		11.6	19.4	3.7
G550	550	300		5.7	83.2	4.6
G600	600	300		21.6	104.9	9.8
G650	650	300		5.2	70.4	24.0

Table 1. XRF Screening Data Aloha Green Property Hakalau, Hawaii

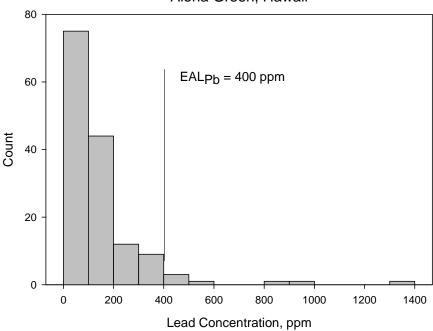
				Arsenic 1	Lead mg/kg (ppm)	Mercury
Sample ID	X-Coord	Y-Coord	<i>EAL</i> ->	22	400	10
Н0	0	350		4.5	27.6	4.2
H100	100	350		148.0	127.7	4.8
H150	150	350		29.7	69.3	5.1
H200	200	350		15.5	133.8	4.0
H250	250	350		20.1	60.7	6.4
H310	310	350		9.0	370.4	4.6
H350	350	350		9.9	74.2	4.5
H400	400	350		3.4	14.4	6.0
H450	450	350		13.0	26.0	4.7
H500	500	350		290.4	150.3	5.0
H550	550	350		85.4	120.3	3.9
H600	600	350		24.1	333.4	4.5
H650	650	350		148.2	87.0	6.7
HI325	325	375		56.2	30.7	4.5
HI375	375	375		96.4	62.5	4.1
HI425	425	375		12.6	12.2	4.4
HI475	475	375		259.1	95.1	4.3
HI525	525	375		114.2	191.8	5.3
10	0	400		111.7	240.6	4.7
I100	100	400		32.6	446.6	12.0
I150	150	400	_	4.0	52.4	5.2
I200	200	400		80.1	134.2	4.6
I250	250	400		57.8	95.6	4.4
I315	315	400		64.4	149.9	4.7
I350	350	400		302.6	113.0	5.7
I400	400	400		180.2	79.4	5.0
I450	450	400		81.0	50.0	4.3
<i>I500</i>	500	400		106.0	63.5	4.5
I550	550	400		64.0	119.5	4.5
<i>I600</i>	600	400		160.4	191.4	6.7
I665	665	400		183.7	99.2	5.6
IJ275	275	425		307.8	85.3	4.1
IJ325	325	425		737.8	85.5	4.4
IJ375	375	425		649.4	116.5	4.9
IJ425	425	425		193.2	71.4	4.2
IJ525	525	425		330.4	95.4	5.9
IJ575	575	425		97.2	133.5	6.2
J100	100	450		7.9	165.3	4.4
J150	150	450		14.5	112.4	4.5
J200	200	450		13.8	116.2	5.0
J250	250	450		48.5	173.9	7.6
J300	300	450		55.1	96.3	4.1
J350	350	450		416.2	99.0	4.8
J400	400	450		369.0	109.2	6.4
J500	500	450		229.1	111.5	4.7
J550	550	450		205.9	79.0	4.5
J650	650	450		21.6	204.4	4.3
J700	700	450		19.0	123.6	7.6

Table 1. XRF Screening Data Aloha Green Property Hakalau, Hawaii

				Arsenic 1	Lead mg/kg (ppm)	Mercury
Sample ID	X-Coord	Y-Coord	<i>EAL</i> ->	22	400	10
JK-40	-40	475		11		
JK225	225	475		132.4	77.9	3.7
JK275	275	475		207.5	58.7	4.2
JK325	325	475		330.7	426.9	4.6
JK375	375	475		1417.8	89.3	5.4
JK425	425	475		376.9	122.3	5.9
JK475	475	475		264.0	77.7	4.4
JK525	525	475		144.4	78.4	4.0
JK575	575	475		124.3	87.4	4.6
K100	100	500		34.6		
K150	150	500		15.8	78.6	4.8
K200	200	500		55.6	60.8	3.8
K250	250	500		306.7	105.1	4.3
K300	300	500		13349.9	97.4	16.2
K350	350	500		6379.4	336.0	15.2
K400	400	500		140.6	51.4	4.4
K450	450	500		23.1	19.9	3.9
K500	500	500		385.1	233.3	5.6
K550	550	500		232.2	100.5	4.6
L175	175	525		226		
L225	225	525		56.1		
L275	275	525		182		
L325	325	525		688		
L375	375	525		191		
L425	425	525		66.7		
L475	475	525		13.2		
L525	525	525		315		
L575	575	525		179		


Notes:

 $^{1 -} For \ contour \ mapping, \ used \ 1/2 \ detection \ limit$


^{2 -} Samples missing lead and mercury values were from infill (second) sampling event focussed on arsenic

^{3 -} Shaded values are concentrations above EAL

Histogram for Mercury Aloha Green, Hawaii

Histogram for Lead Aloha Green, Hawaii

